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• Tropical Cyclone Parameter Estimation
• Lake-effect Ensemble Design
• Geometry-Sensitive Ensemble Mean
• Smartphone Pressure Data Assimilation
• Convection Initiation Deep Learning



Assessing the Ensemble Predictability 
of East Coast Winter Storms

Deterministic Forecast: 24-30” for NYC
Ensemble Forecast: 5 to 40” of snow?



Ensemble Sensitivity: 
January 2015 Snowstorm

Position error in coastal low traced 
backwards in time to uncertainties in 
synoptic scale flow (contours) using 
ensemble sensitivity (shading).

Red: 500 mb height field is positively 
correlated with eastward track error.

Tight gradient in probability of precipitation (top) 
linked to position of coastal low pressure (bottom).

From Greybush et al. (2016)



QPF and Track Error as function of 
Forecast Lead Time

From Greybush et al. (2016)



Predictability Horizons

To answer: How far in advance 
is a feature predictable?

First, identify an event 
(location, variable type, etc.).

Then characterize, using the 
ensemble, the:

• initial detection
• emergence of a signal
• convergence of solutions 

From Greybush et al. (2016)



Understanding 
Predictability with 
Convection-allowing
Ensembles

Intrinsic Predictability:
Even if we have a perfect model, 
and nearly perfect initial 
conditions, 
predictability is limited.
Estimate using ensemble spread of 
perfect model, as initial 
perturbations become smaller.

Practical Predictability:
Given our current (limited) 
observing system and (imperfect) 
models, how far ahead can we 
skillfully forecast a weather 
phenomenon.
Need to account for model error; 
e.g. include perturbations in 
forecast phase.

From Greybush et al. (2016)



NASA IMPACTS Field Campaign: 
Data Assimilation and Parameter Estimation

• Field Campaign includes 
aircraft in situ, radar 
observations

• PSU goals include:
• 4D regional reanalyses at 

convection-allowing 
resolution

• validation, then 
assimilation, with field 
campaign observations

• Finally, improve WRF 
microphysical modeling 
using ensemble 
parameter estimation

With Collaborators Matt Kumjian, Yunji Zhang



Potential for New Constraints on Tropical Cyclone Surface-Exchange Coefficients 
through Simultaneous Ensemble-Based State and Parameter Estimation

From Nystrom et al. (2021)

Robert Nystrom, Steven Greybush, Xingchao Chen, and Fuqing Zhang



• Critical forecasting field 
needs to be sensitive to 
parameter within the 
model.

• Model parameter must 
also impact observable 
variables.

Ensemble Parameter Estimation: 
Correlations

From Nystrom et al. (2021)



Ensemble Parameter Estimation: 
OSSE Results

From Nystrom et al. (2021)



Important meteorological variables:
• lower-level wind speed and direction
• lower-level temperature and stability 
profiles (Niziol 1987, 1995)

• mid- and low-level temperature 
advection (Eipper et al., in preparation)

Important environmental variables:
• lake surface temperature
• lake surface ice coverage (Cordeira and Laird, 2008)

• lake shape and orientation (Laird et al., 2003)

• local topography at lake shore and inland (Onton and 
Steenburgh 2001; Alcott and Steenburgh 2013; Veals and Steenburgh
2015)

Image 
credit: UCAR

Lake-effect snow (LES) is a cold-season 
convective event that delivers a large 

portion of the seasonal precipitation to 
the Great Lakes region. 

Multi-Scale Phenomenon

Convection-allowing ensemble forecasting 
and regional data assimilation

for the prediction of lake-effect snow



LES case study

• Long-lived long-lake-
axis-parallel (LLAP) 
band

• Affected the Tug Hill 
Plateau region east of 
Lake Ontario, 10 
December – 12 
December 2013

• Significant snowfall, total 
accumulations 
exceeding 80 cm

This event was particularly well observed as part of the Ontario 
Winter Lake-Effect Storms (OWLeS) project [Kristovich et al., 

2016], which provides some added in-situ observations.



Ensemble Design

• Single physics vs. multi-physics
• GEFS vs. CV3 lateral boundary 
conditions

Weather Research and 
Forecasting (WRF) V3.7.1

3 nested domains: 
27, 9, 3 km
43 vertical levels

Parameterizations selected include:
Thompson MP;
MYJ PBL, Eta surface layer, NOAH 
LSM;
Dudhia & RRTMG short/longwave
schemes; 
Grell 3D cumulus domains 1&2 only

Characterize Uncertainty from:
Synoptic Scales
(from outside Great Lakes region; driven by GEFS)
Mesoscale
(simulated by convective-allowing WRF and 
regional EnKF)
Parameterization Errors
(represent using multi-physics and stochastically 
perturbed ensembles)



EnKF data assimilation lead to significant QPF improvement

• Overforecast bias improved:  maximum reduced, 
less overall precipitation produced within the 
domain

• Location bias reduced: precipitation maximum 
shifted south

Surface-based

U

T

Regional EnKF versus BC Update



Position error?

EnKF analysis recognizes single-banded structure in correct location; other 
forecasts do not.

Ensemble probability (colors) of exceeding composite reflectivity greater than 15 dBZ at 19 UTC 
11 Dec; truth shown in black contour.



Object-Based Verification:
Regional ICs play an important role in LES band forecasting

Location and orientation errors lead to problems in precipitation 
timing and intensity



Geometry-Sensitive Ensemble Mean

Idealized arithmetic (pixel-wise) mean (left) vs. GEM (right) for an ensemble of storm 
cells (top). While the arithmetic mean takes the strict average on a per-pixel basis, 
resulting in loss of intensity and structure information, the ideal GEM gives a more 
realistic mean that retains that information. From Seibert et al.  (2021)

Jon Seibert, Steven Greybush, Jia Li, Zhoumin Zhang, and Fuqing Zhang

Motivation: Create an ensemble 
“mean” that retains the physical 

structures present in the 
individual members.



Schematic illustrating the process of clustering pixels into cloud patches and fitting the 
Gaussian of their 2TS: (a) The starting reflectivity source image, in grayscale; (b) image 
broken into patches, outlined in different colors; (c) intensity-weighted centroid (red 
star) and Gaussian distribution (red ellipse) calculated for each patch.

Schematic diagram illustrating the two-tiered signature (2TS), which captures the structural information 
by describing the location, intensity (shown here in grayscale), and shape of each cloud patch in a 
dynamic fashion. Figure is adapted from Li and Zhang, 2018.

Geometry-Sensitive Ensemble Mean: 
Overview of Methods

From Seibert et al.  (2021)



GEM Applications Include:
Lake-Effect Snow, 

Severe Thunderstorms

Thresholded Snowband ensemble results using GEM Bandwidth B, 
shown as composite reflectivity images: (a) PWA, (b) Scaled BPM, 

(c) ABM, and (d) Scaled MDM.

Thresholded Thunderstorm ensemble results using GEM 
Bandwidth B, shown as composite reflectivity images: (a) PWA, (b) 

Scaled BPM, (c) ABM, and (d) Scaled MDM.

PWA = Pixel-Weighted Average
MDM = Mixture Density Mean
BPM = Bayesian Posterior Mean
ABM = Adjusted Best Member



Impact Of Assimilating Surface Pressure Observations From 
Smartphones On A Regional, High Resolution Ensemble

Forecast: Observing System Simulation Experiments

From Hanson (2016)

Case Study: Severe Thunderstorms in Pennsylvania



PressureNet Data
• Collected data from 27 

February 2015 – 13 May 2015 
(75 days)

• Hourly data sets contained an 
average of 15,000 observations 
on the domain shown

3 km

3 
km

Standard deviation for each 
spatial grid averaged over entire 
domain... and then averaged for 
entire 75 days of data 

2.34 
hPa

Observation Error:

Challenge: representativeness errors and quality control.

“Super-observations” created for 
smartphone observations

- Observations location identical for 
every experiment

- 150 METAR observations
- 3,508 smartphone observations



• WRF-ARW Version 3.7 and the PSU 
WRF-EnKF Data Assimilation 
System

• 27, 9, and 3 km grid spacing in 
domains

• No convective parameterization in 
D03

• Truth created from single 
deterministic WRF forecast 
initialized at 00 UTC 20 April 2015

• Use PSU EnKF (EnSRF algorithm)

Observing System Simulation 
Experiment



Neighborhood Ensemble Probability for ≥ 35 dBZ: 23 UTC 
Truth in black contour

All observations, regardless of type, led to 
higher probability regions that better match 
the truth than the NO_OBS case

Quantitative assessments included RMSD, FSS, 
ROC.

Smartphone observations can have a positive 
impact on the ensemble forecast of a 
convective event in a regional model using 
EnKF data assimilation.

Rapid assimilation of smartphone data (15 
minute cycling) improved analysis results.

Assimilating only smartphone pressures 
successfully updated other state variables 
(e.g. temperature, winds), with skill 
approaching that of conventional networks.

Smartphone observations could be used in 
conjunction with conventional observations 
or possibly as the sole source of observations 
in a data-denied area.

Results



Physically Interpretable Deep Learning for 
Convective Initiation Nowcasts
Da Fan, Steven J. Greybush

Short-term (0-1h) convective initiation (CI) 
nowcasting is challenging.

Goal: Evaluate the performance of deep learning on 
(radar-assessed) CI nowcasts using GOES-R and HRRR 
data as predictors, and use interpretable machine 
learning to assess the most important predictors

Definition of CI is adapted from Colbert et al. (2019). 
Grid points are defined as CI when the following 
conditions are met:

○ Composite reflectivity ≥ 35 dBZ,
○ No points within 15 km exhibit composite 

reflectivity ≥ 35 dBZ in the past 11 min, and
○ At least three convective cells are grouped 

in the track that a CI belongs to.



Assembling  Training, Validation, and Testing Datasets

27
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CH9-14: 30×30 km (15×15 
points) 15 min prior to the 
timing of CI
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Total number of samples: 65849
○ CI class (53.5%) 
○ NM class (35.7%)
○ RM class (10.8%)

Data split:
○ Training (60%)
○ Validation (20%)
○ Testing (20%): June 27-30

Data period: June 1-30, 2020



Predictor and Predictand

28

CINM

NM

NMNM

NM

NM

NM

NM

RM

CI

GOES-R
(2-km spacing, 
5-min intervals)

HRRR
(3-km spacing,
hourly intervals)

CH9-14: 30×30 km (15×15 points) 
15 min prior to the timing of CI

Variables: 45×45 km (15×15 points)
the nearest hour before the timing of 
CI (e.g., Var at 3 am for CI at 3:30 am)

Predictands: 1/0 (whether CI occurred within 
30×30 km patch over the next 15 min)

NM: near-miss
RM: random

Predictors



Machine learning models

29

● Logistic regression model (LR): representative values 
over patches (Mecikalski et al. 2015)

Predictors

● Convolutional neural network (CNN):
○ CNN-Sat: All GOES-R predictors
○ CNN-NWP: All HRRR predictors
○ CNN-SatNWP: All HRRR +  CH10 BT + 

CH14 BT



Summary of Topics and Techniques:

• East Coast Winter Storms Ensemble Predictability and Sensitivity
• IMPACTS Modeling and Data Assimilation
• Tropical Cyclone Parameter Estimation
• Lake-effect Ensemble Design
• Object-based Approaches: Geometry-Sensitive Ensemble Mean
• Novel Datasets: Smartphone Pressure Data Assimilation
• Convection Initiation Deep Learning
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